Baby giant pterosaurs may have pushed smaller species extinct, fossil …

Pterosaurs, the flying cousins of the dinosaurs, reached immense sizes in the late Cretaceous period (100-66 million years ago), some species with wingspans of perhaps more than ten metres.

Their ancestors during the earlier Triassic and Jurassic periods (252-145 million years ago) had far more modest wingspans, up to about two metres. But scientists haven’t found any fossils of these much smaller pterosaur species from the later period.

This absence of smaller forms has often been connected with the evolution of birds, who could have outcompeted and replaced small pterosaur species. This explanation has held sway for a associate of decades or more, but it raises questions.

For example, research indicates pterosaurs were highly precocial (capable of fending for themselves shortly after birth) and could fly soon after hatching. If this was the case, why then were not all pterosaurs replaced by birds who would have outcompeted the young of the large forms in addition as the small pterosaur species?

Our international research group has been pondering these and other pterosaur problems for the past 40 years. In our new study, we’ve discovered it was truly probably the babies of giant pterosaurs – known as flaplings – who overshadowed the small adult pterosaurs.

We unearthed hundreds of pterosaur jaw specimens from the mid-Cretaceous Kem Kem Group, a river place in south-east Morocco. The area was home to many pterosaurs, among other species.

Most Kem Kem Group fossils are noteworthy because they’re very large. But we singled out five toothless jaw particles to examine closely, because of their small size. We wanted to understand more about the pterosaurs these particles belonged to.

The jaw particles are very small – the smallest approximately the size of a thumb nail.
Roy Smith, Author provided

We used a variety of techniques to determine whether the jaw particles were the tips of large or giant pterosaur jaws, were from small adult pterosaurs, or were immature individuals of larger species (immature method anywhere from a hatchling to a teenager). These included examining the texture of the bone’s surface and looking at the the internal structure of the bone (called histology). We also examined small openings on the surfaces of the jaws where sensory nerves emerged, called neural foramina, which were involved in detecting prey.

We found the bone of the jaws had a rippled fibrous texture, typical of immature individuals. More mature pterosaurs have bones with a very smooth surface. The internal structure of the bone also suggested they belonged to young pterosaurs – the bone was fast-growing and lacked growth lines. Finally, the frequency and dispensing of foramina indicated the samples were from immature pterosaurs too.

The overall shape and features of the jaws were similar to that of two species of large to giant pterosaurs already described from the Kem Kem Group: Alanqa saharica and Apatorhamphus gyrostega. We concluded the particles belonged to immature individuals of these two species, some perhaps less than a year old. It’s hard to calculate the size of these pterosaurs based on the small particles we have, but their wingspan may have been as small as 25cm.

Read more:
Hundreds of pterosaur eggs help show the early life of flying reptiles

Why is this meaningful?

Many studies have assumed that flaplings (newly hatched pterosaurs) played little to no role in these ancient ecosystems. This idea would be plausible if pterosaurs were altricial – cared for by their parents after hatching – like many birds. But if pterosaurs were indeed precocial and could care for themselves and already fly soon after hatching, they likely played a more meaningful role in ancient ecosystems.

To avoid the adults of these large-to-giant pterosaurs outcompeting their own young for resources, they likely occupied different ecological niches. A niche is the role an organism plays in an ecosystem, for example its diet, who it eats, and who eats it. It’s possible the tiny pterosaurs occupied niches before favoured by small adult pterosaurs in the Triassic to Jurassic periods.

We examined hundreds of jaw specimens from the mid-Cretaceous Kem Kem Group of southeast Morocco.
Robert Loveridge, Author provided

Given the spectrum of pterosaur sizes which likely lived alongside each other – as shown by our work and past data from the Kem Kem Group – we can ascertain that pterosaurs were more like crocodiles than birds in their feeding ecology. For example, with birds, there will be perhaps ten different species of different sizes alongside a riverbank all feeding on slightly different prey.

Crocodiles, however, are much less different. Some hatchling crocodiles satisfy on insects, and as they grow they change their diet to small fish, then larger fish and then small mammals, until a big adult crocodile is capable of taking a zebra. It seems pterosaurs did something similar, occupying different niches as they grew – a much more reptilian than avian life strategy.

Read more:
Largest ever flying creatures had longer necks than giraffes – we found out how these pterosaurs kept their heads up

If birds truly did outcompete small pterosaurs, they would have surely also outcompeted these small, immature flaplings of the giant pterosaurs, resulting in the much earlier extinction of pterosaurs. As it is, birds and pterosaurs coexisted for more than 85 million years, until pterosaurs finally went extinct along with the dinosaurs about 66 million years ago.

Click: See details

Leave a Reply